検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年
検索結果: 3 件中 1件目~3件目を表示
  • 1

発表形式

Initialising ...

選択項目を絞り込む

掲載資料名

Initialising ...

発表会議名

Initialising ...

筆頭著者名

Initialising ...

キーワード

Initialising ...

使用言語

Initialising ...

発行年

Initialising ...

開催年

Initialising ...

選択した検索結果をダウンロード

論文

Stacking fault driven phase transformation in CrCoNi medium entropy alloy

He, H.*; Naeem, M.*; Zhang, F.*; Zhao, Y.*; Harjo, S.; 川崎 卓郎; Wang, B.*; Wu, X.*; Lan, S.*; Wu, Z.*; et al.

Nano Letters, 21(3), p.1419 - 1426, 2021/02

 被引用回数:41 パーセンタイル:95.42(Chemistry, Multidisciplinary)

In CrCoNi, a so-called medium-entropy alloy, an fcc-to-hcp phase transformation has long been anticipated. Here, we report an in situ loading study with neutron diffraction, which revealed a bulk fcc-to-hcp phase transformation in CrCoNi at 15 K under tensile loading. By correlating deformation characteristics of the fcc phase with the development of the hcp phase, it is shown that the nucleation of the hcp phase was triggered by intrinsic stacking faults. The confirmation of a bulk phase transformation adds to the myriads of deformation mechanisms available in CrCoNi, which together underpin the unusually large ductility at low temperatures.

論文

Comparison of dislocation density, twin fault probability, and stacking fault energy between CrCoNi and CrCoNiFe medium entropy alloys deformed at 293 and 140K

Woo, W.*; Naeem, M.*; Jeong, J.-S.*; Lee, C.-M.*; Harjo, S.; 川崎 卓郎; He, H.*; Wang, X.-L.*

Materials Science & Engineering A, 781, p.139224_1 - 139224_7, 2020/04

 被引用回数:39 パーセンタイル:93.25(Nanoscience & Nanotechnology)

To elucidate deformation behavior behind the exceptional mechanical properties of CrCoNi based medium entropy alloys, the deformation related microstructural parameters were determined by using in situ neutron diffraction and peaks profile analysis methods. Superior tensile strength and elongation of the CrCoNi alloy is relevant to higher twin fault probability ($$P_{tw}$$, up to 3.8%) and dislocation density ($$rho$$, up to 9.7 $$times$$ 10$$^{15}$$ m$$^{-2}$$) compared to those (1.3% and 3.4 $$times$$ 10$$^{15}$$ m$$^{-2}$$, respectively) of the CrCoNiFe at 293K. Meanwhile, at 140K, the $$P_{tw}$$ of the CrCoNiFe significantly increased up to 4.4% with the stable $$rho$$ of $$sim$$5.0 $$times$$ 10$$^{15}$$ m$$^{-2}$$ and its mechanical properties overwhelm those of the CrCoNi at 273K. Such twinning dominant deformation mechanism at low temperature is also assured by lower stacking fault energy (SFE) of the CrCoNiFe at 140K compared to those of the CrCoNi and CrCoNiFe alloys at 293K.

論文

On the phase transformation and dynamic stress-strain partitioning of ferrous medium-entropy alloy using experimentation and finite element method

Bae, J. W.*; Jung, J.*; Kim, J. G.*; Park, J. M.*; Harjo, S.; 川崎 卓郎; Woo, W.*; Kim, H. S.*

Materialia, 9, p.100619_1 - 100619_15, 2020/03

In the present study, an integrated experimental-numerical analysis on ferrous medium-entropy alloy (FMEA) was conducted to understand the micromechanical response of the constituent phases in the FMEA at -137$$^{circ}$$C. The initial face-centered cubic (FCC) single phase microstructure of the FMEA was transformed to body-centered cubic (BCC) martensite during tensile deformation at -137$$^{circ}$$C, resulting in improved low-temperature mechanical properties. The microstructure evolution due to deformation-induced phase transformation mechanism and strain partitioning behavior was analyzed using ${it ex situ}$ electron backscatter diffraction. The mechanical responses related to the stress partitioning between constituent phases and deformation-induced transformation rate were measured using ${it in situ}$ neutron diffraction in combination with the nanoindentation analysis.

3 件中 1件目~3件目を表示
  • 1